Home
Class 12
MATHS
If int[(logx-1)/(1+(logx)^2)]^2dx=f(x)/(...

If `int[(logx-1)/(1+(logx)^2)]^2dx=f(x)/(1+(g(x))^2)+c`, then (A) `f(x)=x` (B) `f(x)=x^2` (C) `g(x)=logx` (D) `g(x)=(logx)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1) int x*(logx)^(2)dx

Evaluate int((log x-1)/(1+(logx)^(2)))^(2)dx

int((x+1)(x+logx)^2)/(2x)dx

f(x)=cos(logx) , then

Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then (a) f(x)=1/2x^2 (b) g(x)=logx (c) A=1 (d) none of these

int(dx)/(x(1+(logx)^(2))) equals

intdx/(x[(logx)^2+4logx-1])

int(dx)/(x.logx.log(logx))=

Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) g(x)=logx A=1 (d) none of these

If int(x-1)/(x^2sqrt(2x^2-2x-1))dx = sqrt(f(x))/g(x) +c then the value of f(x) and g(x) is