Home
Class 12
MATHS
Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3t...

`Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3tan^(-1)g(x)+C ,t h e n` both `f(x)a n dg(x)` are odd functions `f(x)` is monotonic function `f(x)=g(x)` has no real roots `int(f(x))/(g(x))dx=-1/x+3/(x^3)+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If int(dx)/(x^2+a x+1)=f(g(x))+c , then f(x) is inverse trigonometric function for |a|>2 f(x) is logarithmic function for |a| 2 g(x) is rational function for |a|<2

int(x+1)/(x(1+x e^x)^2)dx=log|1-f(x)|+f(x)+c , then f(x)=

Let f(x)=tanxa n dg(f(x))=f(x-pi/4), where f(x)a n dg(x) are real valued functions. Prove that f(g(x))="tan ((x-1)/(x+1))dot

If f(x)a n dg(x) are two differentiable functions, show that f(x)g(x) is also differentiable such that d/(dx)[f(x)g(x)]=f(x)d/(dx){g(x)}+g(x)d/(dx){f(x)}

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then

Let f(x) = tan^-1 (g(x)) , where g (x) is monotonically increasing for 0 < x < pi/2.

If f(x)=(x+1)/(x-1)a n dg(x)=1/(x-2),t h e n discuss the continuity of f(x),g(x),a n dfog(x)dot

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

If int(x^2-x+1)/((x^2+1)^(3/2))e^x dx=e^xf(x)+c , then (a) f(x) is an even function (b) f(x) is a bounded function (c) the range of f(x) is (0,1) (d) f(x) has two points of extrema