Home
Class 12
MATHS
If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqr...

If `int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(2x)/(4sqrt(e^x+1))dx

Evaluate: int(e^x)/(sqrt(4-e^(2x)))dx

Evaluate: int(e^x)/(sqrt(16-e^(2x))) dx

int(e^x)/((1+e^x)(2+e^x))dx

int x.e^(2x)dx

Evaluate: int(dx)/(sqrt(2e^(x)-1))=

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

Evaluate: inte^(2x)/(4sqrt (e^x+1))dx

STATEMENT-1 : If int(2^(x))/(sqrt(1-4^(x)))=ksin^(-1)(2^(x)) , then k equals (1)/(log2) . STATEMENT-2 : If intf(x)dx=-f(x)+c , then f(log_(e)2)=(1)/(2) STATEMENT-3 : int(e^(x))/(sqrt(1+e^(x)))dx=-2sqrt(1+e^(x))+c

If int(x-1)/(x^2sqrt(2x^2-2x-1))dx = sqrt(f(x))/g(x) +c then the value of f(x) and g(x) is