Home
Class 12
MATHS
int{(logx-1)/(1+(logx)^2)}^2dx is equal ...

`int{(logx-1)/(1+(logx)^2)}^2dx` is equal to (A) `(xe^x)/(1+x^2)+C` (B) `x/(1+(logx)^2)+C` (C) `logx/((logx)^2+1)+C` (D) `(xe^x)/(1+x^2)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(logx/(1+logx)^2)dx

int(log(x+1)-logx)/(x(x+1))dx is equal to :

Find int[log(logx)+1/((logx)^2)]dx

Find int[log(logx)+1/((logx)^2)]dx

(1) int x*(logx)^(2)dx

Evalaute: int((logx-1)/(1+(logx)^2))^2dx

int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx equals

If int[(logx-1)/(1+(logx)^2)]^2dx=f(x)/(1+(g(x))^2)+c , then (A) f(x)=x (B) f(x)=x^2 (C) g(x)=logx (D) g(x)=(logx)^2

int(dx)/(x(1+(logx)^(2))) equals

int((x+1)(x+logx)^2)/(2x)dx