Home
Class 12
MATHS
Prove that int0^1tan^(-1)(1/(1-x+x^2))d...

Prove that `int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dx`. Hence or otherwise, evaluate the integral `int_0^1tan^(-1)(1-x+x^2)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dxdot Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx

int_0^1cot^(- 1)(1-x+x^2)dx

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

2) int_(0)^(1)tan^(-1)(1-x+x^(2))dx

Evaluate the following integral: int_0^1tan^(-1)x\ dx

Evaluate the following integral: int_0^1tan^(-1)x\ dx

Evaluate int_0^1(tan^(-1)x)/(1+x^2)dx

Evaluate the integrals int_0^1x/(x^2+1)dx

Evaluate the following integral: int_0^1tan^(-1)((2x)/(1-x^2))dx

Evaluate the following integral: int_0^1(tan^(-1)x)/(1+x^2)dx