Home
Class 12
MATHS
If f : R to R, f(x)=x+sinx, then value o...

If `f : R to R`, `f(x)=x+sinx`, then value of `int_(0)^(pi)(f^(-1)(x))dx` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

Let a function f:R to R be defined as f (x) =x+ sin x. The value of int _(0) ^(2pi)f ^(-1)(x) dx will be:

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

If f(x)=x+sinx , then find (2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx .

If f(k - x) + f(x) = sin x , then the value of integral I = int_(0)^(k) f(x)dx is equal to

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

The integral int_(0)^(pi) x f(sinx )dx is equal to

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

Let y=f(x)=4x^(3)+2x-6 , then the value of int_(0)^(2)f(x)dx+int_(0)^(30)f^(-1)(y)dy is equal to _________.