Home
Class 12
MATHS
If int(0)^(pi)((x)/(1+sinx))^(2) dx=A, t...

If `int_(0)^(pi)((x)/(1+sinx))^(2) dx=A,` then the value for `int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi//2) x^(2) cos x dx

int_(0)^(pi) [2sin x]dx=

int_(0)^(pi/2) (cos^(2)x dx)/(cos^(2)x+4 sin^(2)x)

int_(0)^( 2 pi)(dx)/(1+2^{sin x})

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

The value of I=int_(0)^(pi//2)((sinx+cos)^(2))/(sqrt(1+sin2x))dx is

int_(0)^(pi//6) sqrt(1-sin 2x) dx

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

The value of int_(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx" , is