Home
Class 12
MATHS
If n is a positive integer, prove that:...

If `n` is a positive integer, prove that:`int_0^(2pi) (cos(n-1)x-cosnx)/(1-cosx)dx=2pi`, hence or otherwise, show that `int_0^(2pi) (sin((nx)/2)/sin(x/2))^2dx=2npi`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_0^(pi//2)(sin x)/(sinx-cosx)dx=pi/4

int_0^(2pi) sin^2x dx

Prove that the value of : int_0^pi(sin(n+1/2)x)/sin(x/2)dx=pi

Evaluate: int_0^(pi//2)(sin x-cosx)/(1+sin x cosx)dx

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Evaluate: int_0^(pi/2)(x+sinx)/(1+cosx) dx

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that : int_(0)^(pi) sin^(2m) x. cos^(2m+1) x dx=0