Home
Class 12
MATHS
Let f(x)=int0^(sin^2x) sin^-1(sqrt(t))dt...

Let `f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt`, then (A) `f(x)` is a constant function (B) `f(pi/4)=0` (C) `f(pi/3)=pi/4` (D) `f(pi/4)=pi/4`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

(i) If f(x) = int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t) dt, then prove that f'(x) = 0 AA x in R . (ii) Find the value of x for which function f(x) = int_(-1)^(x) t(e^(t)-1)(t-1)(t-2)^(3)(t-3)^(5)dt has a local minimum.

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

Statement-1: int_(0)^(sin^(2)x) sin^(-1)sqrt(t )dt+int_(0)^(cos^(2)x) cos^(-1)sqrt(t )dt=(pi)/(4) for all x. Statement-2: (d)/(dx) int_(theta(x))overset(psi(x)) f(t)dt=psi'(x)f(psi(x))-theta'(x)f(theta(x))

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt , then f(x+pi) is (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

Show that: int_0^(pi//2)f(sin2x)sinxdx=sqrt(2)int_0^(pi//4)f(cos2x)cosxdxdot

Show that: int_0^(pi//2)f(sin2x)sinxdx=sqrt(2)int_0^(pi//4)f(cos2x)cosxdxdot

Show that: int_0^(pi//2)f(sin2x)sinxdx=sqrt(2)int_0^(pi//4)f(cos2x)cosxdxdot

If f(x)=int_0^x{f(t)}^(- 1)dt and int_0^1{f(t)}^(- 1)=sqrt(2), then