Home
Class 12
MATHS
Find the value of the integral int(0)^(p...

Find the value of the integral `int_(0)^(pi)log(1+cosx)dx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

By using the properties of definite integrals, evaluate the integrals int_0^pilog(1+cosx)dx

The value of the integral int_(0)^(pi//2)log |tan x cot x |dx is

The value of the integral int_(0)^(pi)(e^(|cosx|)sinx)/(1+e^(cotx))dx is equal to

Find the value of the following: int_0^(pi/2) sqrt(1+cosx)dx

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

The value of the integral I=int_(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pix)/(2))dx is equal to

The value of integral int_(1)^(e) (log x)^(3)dx , is

int_(0)^(pi)|cosx|dx=?

Evaluate: int_0^pi log(1+cosx)dx