Home
Class 12
MATHS
IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,b...

`IfA_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,b_n=int_0^(pi/2)((sinn x)/(sinx))^2dxforn in N ,` Then `A_(n+1)=A_n` (b) `B_(n+1)=B_n` `A_(n+1)-A_n=B_(n+1)` (d) `B_(n+1)-B_n=A_(n+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

IfA_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,b_n=int_0^(pi/2)((sinn x)/(sinx))^2dxforn in N , Then (a) A_(n+1)=A_n (b) B_(n+1)=B_n (c) A_(n+1)-A_n=B_(n+1) (d) B_(n+1)-B_n=A_(n+1)

If A_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,B_n=int_0^(pi/2)((sinn x)/(sinx))^2 dx for n inN , Then (A) A_(n+1)=A_n (B) B_(n+1)=B_n (C) A_(n+1)-A_n=B_(n+1) (D) B_(n+1)-B_n=A_(n+1)

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

If I_n=int_0^(pi//4)tan^("n")x dx , prove that I_n+I_(n-2)=1/(n-1)dot

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

For U_n=int_0^1x^n(2-x)^n dx ; V_n=int_0^1x^n(1-x)^ndxn in N , which of the following statement(s) is/are true? U_n=2^n V_n (b) U_n=2^(-n)V_n U_n=2^(2n)V_n (d) V_n=2^(-2n)U_n

The value of int_0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >= 0 pi/2 (b) 0 (c) pi (d) 2pi

If I_n=int_(pi/4)^(pi/2) (tanx)^-n dx(ngt1) , then I_n+I_(n+2)= (A) 1/(n-1) (B) 1/(n+1) (C) -1/(n+1) (D) 1/n-1

If n!=1, int_0^(pi/4) (tan^nx+tan^(n-2)x)d(x-[x])= (A) 1/(n-1) (B) 1/(n+1) (C) 1/n (D) 2/(n-1)

If sum_(r=1)^n r^4= a_n then sum_(r=1)^n(2r-1)^4)= (A) a_(2n)+a_n (B) a_(2n)-a_n (C) a_(2n)-16a_n (D) a_(2n)+16b_n