Home
Class 12
MATHS
Let f: (0, infty) rarr R and F (x) = in...

Let `f: (0, infty) rarr R and F (x) = int_(0) ^(x) f(t) dt . If F(x^(2))=x^(2)(1+x),` then f (4) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(0,oo)to R and F(x)=int_(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x) , then f(4) equals

Let f : (0,oo) to R and F(x)=int_(0)^(x)t f(t)dt . If F(x^(2))=x^(4)+x^(5) , then

f:(0,infty)rarrR and F(x)=int_(0)^(x)t f(t)dt If F(x^(2))=x^(4)+x^(5),"then" Sigma_(r=1)^(12)f(r^(2)) is equal to S

Let f : (0, oo) rarr R be a continuous function such that f(x) = int_(0)^(x) t f(t) dt . If f(x^(2)) = x^(4) + x^(5) , then sum_(r = 1)^(12) f(r^(2)) , is equal to

Let f: (0,oo)->R and F(x^3)=int_0^ 3f(t)dt, if F(x^3)=x^3(x^2+x+1) .Then f(27)=

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

Let f(x) = int_(-2)^(x)|t + 1|dt , then