Home
Class 12
MATHS
If In=int0^(pi/2) x^n sinx dx, then [I4+...

If `I_n=int_0^(pi/2) x^n sinx dx`, then `[I_4+12I_2]` is equal to (A) `4pi` (B) `3(pi/2)^3` (C) `(pi/2)^2` (D) `4(pi/2)^3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

I_10=int_0^(pi/2)x^(10)sinx dx then I_10+90I_8 is (A) 10(pi/2)^6 (B) 10(pi/2)^9 (C) 10(pi/2)^8 (D) 10(pi/2)^7

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

int_0^21/(1+tanx)dx is equal to (pi^)/4 (b) (pi^)/3 (c) (pi^)/2 (d) pi

int_(-(3pi)/2)^(-pi/2) {(pi+x)^3+cos^2(x+3pi)}dx is equal to (A) pi/4-1 (B) pi^4/32 (C) pi^4/32+pi/2 (D) pi/2

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

int_0^(pi/2)sin4xcotx dx is equal to -pi/2 (2) 0 (3) pi/2 (4) pi

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

int_0^pi dx/(1-2acosx+a^2), alt1 is equal to (A) (pialog2)/4 (B) (4pi)/(2-a^2) (C) pi/(1-a^2) (D) none of these