Home
Class 12
MATHS
int0^pi (sin((n+1)/2)x)/sinxdx= (A) 0 (B...

`int_0^pi (sin((n+1)/2)x)/sinxdx=` (A) `0` (B) `pi/2` (C) `pi` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^pi cos2xlogsinxdx= (A) pi (B) -pi/2 (C) pi/2 (D) none of these

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these

int_-(pi/3)^(pi/3) (x^3cosx)/sin^2xdx= (A) 0 (B) 1 (C) -1 (D) none of these

sqrt(3)int_0^pi dx/(1+2sin^2x)= (A) -pi (B) 0 (C) pi (D) none of these

int_0^pi dx/(1+10^(cosx))+int_(-1)^1 log((2-x)/(2+x))dx= (A) pi/2 (B) -pi (C) 0 (D) none of these

int_0^(2pi) e^(sin^2nx) tannxdx= (A) 1 (B) pi (C) 2pi (D) 0

int_-pi^(3pi) cot^-1(cotx)dx= (A) pi^2 (B) 2pi^2 (C) 3pi^2 (D) none of these

Let a=int_0^(pi/2) sinx/xdx , then (A) 0ltalt1 (B) agt2 (C) 1ltaltpi/2 (D) none of these

If int_(pi/4)^((3pi)/4) x/(1+sinx)dx=k(sqrt(2)-1) , then k = (A) 0 (B) pi (C) 2pi (D) none of these

int_1^(e^(17))(pi"sin"(pi(log)_e x))/x dx is equal to (A) 2 (B) -2 (C) 2//pi (D) none of these