Home
Class 12
MATHS
Lt(nrarroo)((n!)/n^n)^(1/n)= (A) e^(-2) ...

`Lt_(nrarroo)((n!)/n^n)^(1/n)=` (A) `e^(-2)` (B) `e^(-1)` (C) `e^3` (D) `e`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nrarroo) sum_(r=1)^n 1/n e^(r/n) is (A) 1-e (B) e-1 (C) e (D) e+1

Lt_(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0 , is equal to (A) k/e (B) e/k (C) 1/(ke) (D) none of these

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is (a) -1 (b) 0 (c) 1 (d) ∞

T h ev a l u eof(lim)_(nvecoo)[t a npi/(2n)tan(2pi)/(2n)dottan(npi)/(2n)]^(1//n)i s e (b) e^2 (c) 1 (d) e^3

The value of lim_(nrarroo)((e^((1)/(n)))/(n^(2))+(2e^((2)/(n)))/(n^(2))+(3e^((3)/(n)))/(n^(2))+…+(2e^(2))/(n)) is

The value of lim_(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^((n-1)//n))/(n)] is

Given that lim_(nrarroo) sum_(r=1)^(n) (log_(e)(n^(2)+r^(2))-2log_(e)n)/n = log_(e)2+pi/2-2 , then evaluate : lim_(nrarroo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+2^(2))^(m) "......"(2n^(2))^(m)]^(1//n) .

If I_m=int_1^e (lnx)^m dx ,m in N , then I_(10)+10 I_9 is equal to (A) e^(10) (B) (e^(10))/(10) (C) e (D) e-1

If lim_(nrarroo)Sigma_(r=1)^(2n)(3r^(2))/(n^(3))e^((r^(3))/(n^(3)))=e^(a)-e^(b) , then a+b is equal to

lim_(nrarroo) (1-x+x.root n e)^(n) is equal to