Home
Class 12
MATHS
If k ne 0 is a constant and n in N then,...

If `k ne 0` is a constant and `n in N` then, `underset(n to prop)lim{(n!)/((kn)^(n))}` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(ntooo)(sin^(n)1+cos^(n)1)^(n) is equal to

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

lim_(n to oo)(n!)/((n+1)!-n!)

lim_(ntooo) ((n!)^(1//n))/(n) equals

underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-n^(2)) is equal to

lim_(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

lim_(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

The sum, underset(n-1)overset(10)(Sigma)(n(2n+1)(2n-1))/5 is equal to.........

lim_(nrarroo) (1-x+x.root n e)^(n) is equal to

lim_(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to