Home
Class 12
MATHS
The value of Lt(xrarr0){(int0^(x^2) sec^...

The value of `Lt_(xrarr0){(int_0^(x^2) sec^2tdt)/(xsinx)}` is (A) `0` (B) `3` (C) `2` (D) `1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

Evaluate lim_(xto0)(int_(0)^(x^(2))cos^(2)tdt)/(x sin x)

The value of lim_(xrarr0) (sinx)/(xqrt(x^2)) , is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

The value of I=int_0^(pi/2) (sinx+cosx)^2/sqrt(1+sin2x)dx is (A) 2 (B) 1 (C) 0 (D) 3

The value of lim_(xrarr0) {(a^x+b^x+c^x)/(3)}^(1//x) , is

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

lim_(xrarr0) (x^(2)-3x+2)