Home
Class 12
MATHS
The solution for x of the equation int(s...

The solution for `x` of the equation `int_(sqrt(2))^(x)(dt)/(tsqrt(t^(2)-1))=(pi)/(2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(tsqrt(t^(2) -1))dt

If int_(ln2)^x(dt)/(sqrt(e^t-1))=pi/6 , then x=

I=int sqrt(1-t^(2))dt

Find the equation of tangent to y=int_(x^2)^(x^3)(dt)/(sqrt(1+t^2))a tx=1.

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

The number of integral solutions of the equation 4int _(0)^( infty)(In" t"dt)/(x^(2)+t^(2))-piIn 2 =0, x gt 0, is

In the equation int(dt)/(sqrt(2at-t^(2)))=a^(x) sin^(-1)[t/a-1] . The value of x is

int(1)/(sqrt(x^(2)+a^(2)))dt

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

(1)/(3)int sqrt(5^(2)-t^(2))dt