Home
Class 12
MATHS
int(0)^(pi)[cotx]dx, where [.] denotes t...

`int_(0)^(pi)[cotx]dx,` where [.] denotes the greatest integer function, is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is equal to

int_(0)^(oo)[2e^(-x)]dx , where [.] deontes greatest integer function, is equal to

int_0^oo[3/(x^2+1)]dx, where [.] denotes the greatest integer function, is equal to (A) sqrt2 (B) sqrt2+1 (C) 3/sqrt2 (D) infinite

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

int_(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx , where [.] denotes the greatest integer function, is equal to:

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_1^2(x^([x^2])+[x^2]^x)dx , where [.] denotes the greatest integer function, is equal to