Home
Class 12
MATHS
Let f(x)=int1^xsqrt(2-t^2)dtdot Then the...

Let `f(x)=int_1^xsqrt(2-t^2)dtdot` Then the real roots of the equation `x^2-f^(prime)(x)=0` are `+-1` (b) `+-1/(sqrt(2))` `+-1/2` (d) 0 and 1

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_1^xsqrt(2-t^2)dtdot Then the real roots of the equation , x^2-f^(prime)(x)=0 are: +-1 b. +-1/(sqrt(2)) c. +-1/2 d. 0&1

Let f(x)=int_1^xsqrt(2-t^2)dtdot Then the real roots of the equation x^2-f^(prime)(x)=0 are (a) +-1 (b) +-1/(sqrt(2)) (c) +-1/2 (d) 0 and 1

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

Let f(x)=max{tanx, cotx} . Then the number of roots of the equation f(x)=(1)/(2)" in "(0, 2pi) is

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Let: f(x)=int_0^x|2t-3|dtdot Then discuss continuity and differentiability of f(x)a tx=3/2

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

Let f(x)=int(x^2dx)/((1+x^2)(1+sqrt(x^2+1)))a n df(0)=0. Then value of f(1) will be