Home
Class 12
MATHS
The value of integral int(0)^(log5)(e^(x...

The value of integral `int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

int_(0)^(1)(dx)/(e^(x)+e^(-x))

Find the value of integral A=int_(-a)^(a)(e^(x))/(1+ e^x)dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(0)^(1) (dx)/(e^(x)+e^(-x))

Evaluate : int_(0)^(1)(e^(sqrt(x)))/(sqrt(x))dx

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to