Home
Class 12
MATHS
The value of int0^(sin^2theta) sin^-1 sq...

The value of `int_0^(sin^2theta) sin^-1 sqrt(phi) d phi + int_0^(cos^2theta) cos^-1 sqrt(phi) d phi` is equal to (A) `pi` (B) `pi/2` (C) `pi/3` (D) `pi/4`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2) d theta

The value of I(n) =int_0^pi(sin ^2n theta)/(sin^2theta) d theta is (AA n in N)

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

5. int_0^(pi/4)sec^2theta d theta

int_(-pi//2)^(pi//2) cos x dx is equal to A) 0 B) 1 C) 2 D) 4

Evaluate: int_0^(pi//2)sqrt(costheta)sin^3theta d theta

int_0^1d/(dx){sin^(-1)((2x)/(1+x^2))}dx is equal to 0 (b) pi (c) pi//2 (d) pi//4

The value of int_(0)^(pi//2)(log(1+x sin^(2) theta))/(sin^(2)theta)d theta,xge0 is equal to

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

int_0^pi cos2xlogsinxdx= (A) pi (B) -pi/2 (C) pi/2 (D) none of these