Home
Class 12
MATHS
The value of sum(n=1)^1000 int(n-1)^n e^...

The value of `sum_(n=1)^1000 int_(n-1)^n e^(x-[x])dx`, where `[x]` is the greatest integer function, is (A) `(e^1000-1)/1000` (B) `(e-1)/1000` (C) `(e^1000-1)/(e-1)` (D) `1000(e-1)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

int_0^1000 e^(x-[x])dx

Evaluate sum_(n=1)^(1000)int_(n-1)^(n)|cos2pix|dx

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

Evaluate int_(1)^(a)x.a^(-[log_(e)x])dx,(agt1) .Here [.] represents the greatest integer function.

Evaluate: int_(-5)^5x^2[x+1/2]dx(w h e r e[dot] denotes the greatest integer function).

int_(-1)^2[([x])/(1+x^2)]dx ,w h e r e[dot] denotes the greater integer function, is equal to (a) -2 (b) -1 (c) 0 (d) none of these

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

The greatest value of f(x)=cos(x e^([x])+7x^2-3x),x in [-1,oo], is (where [.] represents the greatest integer function). -1 (b) 1 (c) 0 (d) none of these