Home
Class 12
MATHS
int0^pi dx/(1+10^(cosx))+int(-1)^1 log((...

`int_0^pi dx/(1+10^(cosx))+int_(-1)^1 log((2-x)/(2+x))dx=` (A) `pi/2` (B) `-pi` (C) `0` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^pi dx/(1+cosx)

int_-pi^(3pi) cot^-1(cotx)dx= (A) pi^2 (B) 2pi^2 (C) 3pi^2 (D) none of these

int_0^pi (sin((n+1)/2)x)/sinxdx= (A) 0 (B) pi/2 (C) pi (D) none of these

sqrt(3)int_0^pi dx/(1+2sin^2x)= (A) -pi (B) 0 (C) pi (D) none of these

int_-(pi/3)^(pi/3) (x^3cosx)/sin^2xdx= (A) 0 (B) 1 (C) -1 (D) none of these

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

The value of int_0^(pi//2)(sqrt(cosx))/(sqrt(cos x)+sqrt(sin x))dx is pi//2 b. pi//4 c. 0 d. none of these

Find I=int_0^pi ln(1+cosx)dx

int_1^(e^(17))(pi"sin"(pi(log)_e x))/x dx is equal to (A) 2 (B) -2 (C) 2//pi (D) none of these