Home
Class 12
MATHS
Let f(x)=int(0)^(x)(sin^(100)t)/(sin^(10...

Let `f(x)=int_(0)^(x)(sin^(100)t)/(sin^(100)t+cos^(100)t)dt`, then `f(2pi)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

The function f(x)=int_(0)^(x) log _(|sin t|)(sin t + (1)/(2)) dt , where x in (0,2pi) , then f(x) strictly increases in the interval

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt (pi)/2 then

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

If {F(x)}^(101)=int_0^x(F(t))^(100)(dt)/(1+sint), then find F(x)

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then