Home
Class 12
MATHS
The value of int(1/e->tanx) (tdt)/(1+t^2...

The value of `int_(1/e->tanx) (tdt)/(1+t^2) + int_(1/e->cotx) (dt)/(t*(1+t^2)) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : R rarr R be defined as f(x) = int_(-1)^(e^(x)) (dt)/(1+t^(2)) + int_(1)^(e^(x))(dt)/(1+t^(2)) then

int(dt)/( sqrt(t-1))

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

(1)/(3)int(t*dt)/(sqrt(1+t))

(1)/(2)int(dt)/((1+t))

int(dt)/( sqrt(1-t)-t)

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

int(1)/(sqrt(t)+1)dt

Find the value of ln(int_(0)^(1) e^(t^(2)+t)(2t^(2)+t+1)dt)

If int_0^1e^t/(t+1) dt=a , then int_(b-1)^b e^(-t)/(t-b-1) dt =