Home
Class 12
MATHS
Let f(x) be an integrable odd function i...

Let `f(x)` be an integrable odd function in `[-5,5]` such that `f(10+x)=f(x)`, then `int_x^(10+x) f(t)dt=` (A) `0` (B) `2int_0^5 f(x)dx` (C) `gt0` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

If f(-x)+f(x)=0 then int_a^x f(t) dt is

Let f(x) be a continuous function in R such that f(x)+f(y)=f(x+y) , then int_-2^2 f(x)dx= (A) 2int_0^2 f(x)dx (B) 0 (C) 2f(2) (D) none of these

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

If f is an integrable function such that f(2a-x)=f(x), then prove that int_0^(2a)f(x)dx=2int_0^af(x)dx

Let f(x) be a differentiable function on R such that f'(5-x)= f'(x)AA x in[0,5] with f(0)=-10& f(5)=50 ,then the value of 5int_(0)^(5)f(x)dx

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then int_0^a dx/(1+e^(f(x)))= (A) a (B) a/2 (C) 1/2f(a) (D) none of these

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

If f(1/x)+x^2f(x)=0, xgt0 and a=int_(1/x)^x f(t)dt, 1/2lexle2 , then a= (A) 1 (B) 0 (C) f(2)-f(1/2) (D) none of these