Home
Class 12
MATHS
The value of int1^a[x]f^(prime)(x)dxf^(p...

The value of `int_1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n d[x]` denotes the greatest integer not exceeding `x ,` is
`af(a)-{f(1)f(2)+...+f([a])}` `[a]f(a)-{f(1)+f(2)+...+f([a])}` `[a]f(a)-{f(1)+f(2)+...+fA}`
`af([a])-{f(1)+f(2)+...+fA}`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_1^a[x]f^(prime)(x)dx ,where a >1 , and [x] denotes the greatest integer not exceeding x, is (A) af(a)-{f(1)f(2)+.....+f([a])} (B) [a]f(a)-{f(1)+f(2)+......+f([a])} (C) [a]f(a)-{f(1)+f(2)+.......+fA} (D) af([a])-{f(1)+f(2)+......+fA}

Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greatest integer function).Then f^-1 (x) is

The value of int_(-10)^(10)[{f(f(x)}+{f(f((1)/(x))}]dx , where f(x)=(1-x)/(1+x)

If f^(prime)(x)=3x^2-2/(x^3) and f(1)=0 , find f(x) .

If f^(prime)(x)=x+b ,f(1)=5,f(2)=13 , find f(x)dot

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

If f^(prime)(x)=x+b ,\ \ f(1)=5,\ \ f(2)=13 , find f(x) .

If y=f((2x-1)/(x^2+1)) and f^(prime)(x)=sinx^2 , find (dy)/(dx) .

Given f^(prime)(1)=1"and"d/(dx)(f(2x))=f^(prime)(x)AAx > 0 .If f^(prime)(x) is differentiable then there exies a number c in (2,4) such that f''(c) equals