Home
Class 12
MATHS
The value of the integral int(e^(-1))^(e...

The value of the integral `int_(e^(-1))^(e^2)|((log)_e x)/x|dxi s` `3/2` (b) `5/2` (c) 3 (d) 5

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

The value of the integral underset(e^(-1))overset(e^(2))int |(log_(e)x)/(x)|dx is

Find the value of integral A=int_(-a)^(a)(e^(x))/(1+ e^x)dx

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

The value of the integral int_-a^a (x e^(x^2))/(1+x^2)dx is (A) e^(a^2) (B) 0 (C) e^(-a^2) (D) a