Home
Class 12
MATHS
int(-pi)^(pi) ( e^(sin x ))/( e^(sinx) +...

`int_(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx)) dx is equal to e+1 (b) 1-e e-1 (d) none of these

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/(1+e^(tanx))dx is equal to (a) e+1 (b) 1-e (c) e-1 (d) none of these

int_(0)^(pi) x log sinx dx

int_(0)^(pi//2) cosx\ e^(sinx)\ dx is equal to

int_(0)^(pi) x log sinx\ dx

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

The valueof int_((pi)/(6))^((pi)/(3))e^(sec^(2)x)(sinx)/(cos^(3)x)dx is equal to

The value of the integral int_(0)^(pi)(e^(|cosx|)sinx)/(1+e^(cotx))dx is equal to

I=int_(0)^(2pi)(1)/(1+e^(sinx))dx is equal to