Home
Class 12
MATHS
Let L=lim(nrarroo)inta^oo (ndx)/(1+n^2x^...

Let `L=lim_(nrarroo)int_a^oo (ndx)/(1+n^2x^2)` where `a in R` then `cos L` can be (A) `-1` (B) `0` (C) `1` (D) `1/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let L= lim_(nrarr infty) int_(a)^(infty)(n dx)/(1+n^(2)x^(2)) , where a in R, then L can be

Let L= underset(nrarr infty)(lim)int_(a)^(infty)(n dx)/(1+n^(2)x^(2)) , where a in R, then L can be

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies the relation

("lim")_(n→oo)(a n-(1+n^2)/(1+n))=b , where a is a finite number, then a=1 (b) a=0 (c) b=1 (d) b=-1

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

Let L=lim_(x->0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0 . If L is finite ,then (a) a=2 (b) a=1 (c) L=1/(64) (d) L=1/(32)

("lim")_(n ->oo)[sum_(r=1)^n1/(2^r)],"where "[dot]" denotes G I F is equal to" (a) 1 (b) 0 (c) non existent (d) 2