Home
Class 12
MATHS
int(0)^(oo)(xdx)/((1+x)(1+x^(2)))...

`int_(0)^(oo)(xdx)/((1+x)(1+x^(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(x)/((1+x)(1+x^(2))) dx equals to :

Prove that: int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx =(pi)/(4)

If n gt 1 . Evaluate int_(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n))

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

The value of definite integral int _(0)^(oo) (dx )/((1+ x^(9)) (1+ x^(2))) equal to:

Let I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx , then

The value of int_0^oo(x dx)/((1+x)(1+x^2)) is equal to

int_(0)^(oo) (dx)/([x+sqrt(x^(2)+1)]^(3))dx=

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"