Home
Class 12
MATHS
Let f(x)=int(1)^(x)(3^(t))/(1+t^(2))dt, ...

Let `f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt`, where `xgt0`, Then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)

If I_(1)=int_(x)^(1)(1)/(1+t^(2)) dt and I_(2)=int_(1)^(1//x)(1)/(1+t^(2)) dt "for" x gt0 then,

If f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1 , then prove that f(x)=f(1/x) .

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

For the functions f(x)= int_(0)^(x) (sin t)/t dt where x gt 0 . At x=n pi f(x) attains

If f(x)=int_((1)/(x))^(sqrt(x))cost^(2)dt(xgt0)" then "(df(x))/(dx) is