Home
Class 12
MATHS
Let phi(x,t)={(x(t-1),xlet),(t(x-1), tlt...

Let `phi(x,t)={(x(t-1),xlet),(t(x-1), tltx):}`, where `t` is a continuous function of `x` in `[0,1]`. Let `g(x)=int_0^1 f(t)phi(x,t)dt`, then `g\'\'(x)`= (A) `g(0)+g(1)=1` (B) `g(0)=0` (C) `g(1)=1` (D) `g\'\'(x)=f(x)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

Let f be continuous and the function g is defined as g(x)=int_0^x(t^2int_1^t f(u)du)dt where f(1) = 3 . then the value of g' (1) +g''(1) is

If g(x) is continuous function in [0, oo) satisfying g(1) = 1. If int_(0)^(x) 2x . g^(2)(t)dt = (int_(0)^(x) 2g(x - t)dt)^(2) , find g(x).

Let f(x) be an odd continuous function which is periodic with period 2. if g(x)=underset(0)overset(x)intf(t)dt , then

Suppose f(x) and g(x) are two continuous functions defined for 0<=x<=1 .Given, f(x)=int_0^1 e^(x+1) .f(t) dt and g(x)=int_0^1 e^(x+1) *g(t) dt+x The value of f( 1) equals

Let f ( x) = int _ 0 ^ x g (t) dt , where g is a non - zero even function . If f(x + 5 ) = g (x) , then int _ 0 ^ x f (t ) dt equals :

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to