Home
Class 12
MATHS
If int0^pi x f(sinx) dx=A int0^(pi/2) f(...

If `int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx`, then `A` is
(A) `pi/2`
(B) `pi`
(C) `0`
(D) `2pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2) cosx/(1+sinx)dx

int_0^(pi/2) (dx)/(4+sinx)

Show that int_0^pixf(sinx)dx=pi/2int_0^pif(sinx)dxdot

Find int_0^(pi/2)dx/(1+sinx)

Show that int_0^pifx(sinx)dx=pi/2int_0^pif(sinx)dxdot

int_(0)^(pi) x log sinx dx

int_(0)^(pi)(x)/(1+sinx)dx .

int_0^pi tanx/(sinx+tanx)dx

int_(0)^(pi) x log sinx\ dx

int_(0)^((14pi)/3) |sinx|dx