Home
Class 12
MATHS
Statement-1: Let a,b,c be non zero real ...

Statement-1: Let `a,b,c` be non zero real numbers and `f(x)=ax^2+bx+c` satisfying `int_0^1 (1+cos^8x)f(x)dx=int_0^2(1+cos^8x)f(x)dx` then the equation `f(x)=0` has at least one root in `(0,2)`.Statement-2: If `int_a^b g(x)dx` vanishes and `g(x)` is continuous then the equation `g(x)=0` has at least one real root in `(a,b)`. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_1=int_0^1 e^x/(1+x)dx and I_2=int_0^1(x^2e^(x^2))/(2-x^3)dx Statement-1: I_1/I_2=3e Statement-2: int_a^b f(x)dx=int_a^b f(a+b-x)dx (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Statement-1: int_0^([x]) 4^(x-[x])dx=(3[x])/(2log2) ,Statement-2: int_0^([x]) a^(x-[x])dx=[x]int_0^1 a^(x-[x])dx (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Statement-1: The area bounded by the curve y=xsinx , x-axis and ordinates x=0 and x=2pi is 4pi .Statement-2: The area bounded by the curve y=f(x) , x-axis and two ordinates x=a and x=b is int_a^b |y|dx . (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Statement-1: The area bounded by the curves y=x^2 and y=2/(1+x^2) is 2pi-2/3 Statement-2: The area bounded by the curves y=f(x), y=g(x) and two ordinates x=a and x=b is int_a^b[f(x)-g(x)]dx , if f(x) gt g(x) . (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Let a , b , c be nonzero real numbers such that int_0^1(1+cos^8x)(a x^2+b x+c)dx =int_0^2(1+cos^8x)(a x^2+b x+c)dx=0 Then show that the equation a x^2+b x+c=0 will have one root between 0 and 1 and other root between 1 and 2.

Let a , b , c be nonzero real numbers such that int_0^1(1+cos^8x)(a x^2+b x+c)dx =int_0^2(1+cos^8x)(a x^2+b x+c)dx=0 Then show that the equation a x^2+b x+c=0 will have one root between 0 and 1 and other root between 1 and 2.

Statement-1: If a, b, c in R and 2a + 3b + 6c = 0 , then the equation ax^(2) + bx + c = 0 has at least one real root in (0, 1). Statement-2: If f(x) is a polynomial which assumes both positive and negative values, then it has at least one real root.

If p,q be non zero real numbes and f(x)!=0, x in [0,2] also f(x)gt0 and int_0^1 f(x).(x^2+px+q)dx=int_1^2 f(x).(x^2+px+q)dx=0 then equation x^2+px+q=0 has (A) two imginary roots (B) no root in (0,2) (C) one root in (0,1) and other in (1,2) (D) one root in (-oo,0) and other in (2,oo)

If f(x)=a x^2+b x+c ,g(x)=-a x^2+b x+c ,where ac !=0, then prove that f(x)g(x)=0 has at least two real roots.

Let a, b, c be non zero numbers such that int_(0)^(3)sqrt(x^(2)+x+1)(ax^(2)+bx+c)dx=int_(0)^(5)sqrt(1+x^(2)+x)(ax^(2)+bx+c)dx . Then the quadratic equation ax^(2)+bx+c=0 has