Home
Class 12
MATHS
If mgt0, ngt0, the definite integral I=i...

If `mgt0, ngt0`, the definite integral `I=int_0^1 x^(m-1)(1-x)^(n-1)dx` depends upon the values of `m` and `n` is denoted by `beta(m,n)`, called the beta function.Obviously, `beta(n,m)=beta(m,n)`.Now answer the question:The integral `int_0^(pi/2) cos^(2m)theta sin^(2n)theta d theta=` (A) `1/2beta(m+1/2,n+1/2)` (B) `2beta(2m,2n)` (C) `beta(2m+1,2n+1)` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^2 (8-x^3)^((-1)/3)dx=kbeta(1/3,2/3) , then k equals to (A) 1 (B) 1/2 (C) 1/3 (D) 1/4

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^oo x^(m-1)/(1+x)^(m+n)dx=k int_0^oo x^(n-1)/(1+x)^(m+n)dx , then k is equal to (A) m/n (B) 1 (C) n/m (D) none of these

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

If the value of the definite integral int_0^1(sin^(-1)sqrt(x))/(x^2-x+1)dx is (pi^2)/(sqrt(n)) (where n in N), then the value of n/(27) is

If (a^(m))^(n)=a^(m^(n)) , then express 'm' in the terms of n is (agt0, ane0, mgt1, ngt1)

The integral value of m for which the root of the equation m x^2+(2m-1)x+(m-2)=0 are rational are given by the expression [where n is integer] (A) n^2 (B) n(n+2) (C) n(n+1) (D) none of these

If f(alpha)=f(beta) and n in N , then the value of int_alpha^beta (g(f(x)))^n g\'(f(x))*f\'(x)dx= (A) 1 (B) 0 (C) (beta^(n+1)-alpha^(n+1))/(n+1) (D) none of these

Given that tan alpha = (m)/( m +1), tan beta = (1)/(2m +1) then what is the value of alpha + beta?

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

If tan theta+sin theta=m and tan theta-sin theta=n , then (a) m^2-n^2=4m n (b) m^2+n^2=4m n (c) m^2-n^2=m^2+n^2 (d) m^2-n^2=4sqrt(m n)