Home
Class 12
MATHS
Let u=int0^1("ln"(x+1))/(x^2+1)dx a n d ...

Let `u=int_0^1("ln"(x+1))/(x^2+1)dx a n d v=int_0^(pi/2)ln(sin2x)dx ,t h e n` (a)`u=-pi/2ln2` (b) `4u+v=0` (c)`u+4v=0` (d) `u=pi/8ln2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let u=int_0^1("ln"(x+1))/(x^2+1)dxa n dv=int_0^(pi/2)ln(sin2x)dx ,t h e n u=-pi/2ln2 (b) 4u+v=0 u+4v=0 (d) u=pi/8ln2

8. int_0^(pi/4) log(1+tanx)dx

int_(0)^(pi) x log sinx dx

int_(0)^(pi) x log sinx\ dx

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^x (x^2dx)/(x^4+7x^2+1) then

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^oo (x^2dx)/(x^4+7x^2+1) then

Evaluate : int_0^(pi/4)log(1+tanx)dx .

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

Evaluate: int_(0)^((pi)/(2)) log (sin x) dx