Home
Class 12
MATHS
Let f(x)=int ( z )^(2) (dy)/(sqrt(1+ y ^...

Let `f(x)=int _( z )^(2) (dy)/(sqrt(1+ y ^(3))).` The value of the integral `int _(0)^(2) xf (x ) dx` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int _( x )^(2) (dy)/(sqrt(1+ y ^(3))). The value of the integral int _(0)^(2) xf (x ) dx is equal to:

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

The value of the integral int_-2^2(dx)/(x+1)^3 is

The value of definite integral int _(0)^(oo) (dx )/((1+ x^(9)) (1+ x^(2))) equal to:

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

The value of the integral int_(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx , is

If f(x)=cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals