Home
Class 12
MATHS
The value of int(-2pi)^(5pi) cot^(-1)(ta...

The value of `int_(-2pi)^(5pi) cot^(-1)(tan x) dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-pi)^(pi)(sqrt2cosx)/(1+e^(x))dx is equal to

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int_(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

int_(0)^(pi//8) tan^(2) 2x dx is equal to

The value of int_(0)^(pi//2n) (1)/(1+cot nx)dx , is

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

int_(-pi//2)^(pi//2) sqrt((1-cos 2x)/( 2)) dx is equal to

The value of int_(0)^(2pi)cos^(5)x dx , is

int_(0)^(pi//2) sin 2x log tan x dx is equal to

The value of tan(pi+x)tan(pi-x)cot^(2)x is