Home
Class 12
MATHS
f(x) is a continuous function for all re...

`f(x)` is a continuous function for all real values of `x` and satisfies `int_(n)^(n+1)f(x)dx=(n^(2))/2AA n epsilonI`. Then `int_(-3)^(5)(|x|)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (a) (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

If n in N , then int_(0)^(n) (x-[x])dx is equal to

int(dx)/(x(x^n+1)) is equal to

If n in N , then int_(-n)^(n)(-1)^([x]) dx equals

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

Let f(x) is a continuous function symmetric about the lines x=1a n dx=2. If int_0^(2)f(x)dx=3 and int_0^(50)f(x)=I , then [sqrt(I)] is equal to (where [.] is G.I.F.) (a) 5 (b) 8 (c) 7 (d) 6

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is