Home
Class 12
MATHS
Consider the function y=f(x) defined imp...

Consider the function `y=f(x)` defined implicitly by the equation `y^3-3y+x=0` on the interval `(-oo, -2)uu(2,oo)`. The area of the region bounded by the curve `y=f(x)`, the x-axis and the lines, `x=a, x = b`, where `-oo lt a lt b lt -2` is (A) `int_a^b x/(3((f(x))^2-1))dx+b f(b)-a f(a)` (B) `-int_a^b x/(3((f(x))^2-1))dx+b f(b)-a f(a)` (C) `int_a^b x/(3((f(x))^2-1))dx+b f(b)+a f(a)` (D) `-int_a^b x/(3((f(x))^2-1))dx-b f(b)+a f(a)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The area bounded by the x-axis, the curve y=f(x), and the lines x=1,x=b is equal to sqrt(b^2+1)-sqrt(2) for all b >1, then f(x) is

The area bounded by the X-axis, the cure y = f(x) and the lines x = 1 and x = b is equal to sqrt(b^(2)+1)-sqrt(2) for all b gt 1 then f(x) is

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

Prove that: int_a^b(f(x))/(f(x)+f(a+b-x))dx=(b-a)/2

If f(a+b-x) =f(x) , then int_(a)^(b) x f(x) dx is equal to

Let f(a,b) = int_(a)^(b)(x^(2)-4x+3)dx, (bgt 0) then

Let f:[1,2] to [0,oo) be a continuous function such that f(x)=f(1-x) for all x in [-1,2]. Let R_(1)=int_(-1)^(2) xf(x) dx, and R_(2) be the area of the region bounded by y=f(x),x=-1,x=2 and the x-axis . Then,

If f(x)=f(a+b-x), then int_(a)^(b) xf(x)dx is equal to

If int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10 , then

If int_a^b(f(x)-3x)dx=a^2-b^2 then the value of f(pi/6) is ___