Home
Class 12
MATHS
Consider the function f(x)={(x-[x]-1/2, ...

Consider the function `f(x)={(x-[x]-1/2, if x!inI),(0, if x!inI):}` where `[.]` denotes the greatest integer function and `g(x)=max. {x^2, f(x), |x|}, -2 le x le 2`. Now answer the question:Area bounded by `y=g(x)` when `-2 le x le 2` is (A) `175/48` (B) `275/48` (C) `175/24` (D) `275/24`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x)={{:(x-[x]-(1)/(2),x !in),(0, "x inI):} where [.] denotes the fractional integral function and I is the set of integers. Then find g(x)max.[x^(2),f(x),|x|},-2lexle2.

The function f(x)=[x]+1/2,x!inI is a/an (wher [.] denotes greatest integer function)

Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greatest integer function).Then f^-1 (x) is

A point where function f(x) = [sin [x]] is not continuous in (0,2pi) [.] denotes the greatest integer le x, is

Let f (x)= max (x,x ^(2) x ^(3)) in -2 le x le 2. Then:

Discuss the differentiability of f(x) |[x]| x| "in" -1 lt x le 2, where [.] repesents the greatest intger function .

Find the values of x graphically which satisfy, -1le[x]-x^(2)+4le2 , where [.] denotes the greatest integer function.

Redefine the function f(x)= |1+x| +|1-x|, -2 le x le 2 .

Consider the function f(x) = {{:(2, x le 0),(2, x gt 0):} Find lim_(x->2)

Draw the graph of f(x) = [tan x], 0 le x le 5pi//12 , where [*] represents the greatest integer function.