Home
Class 12
MATHS
Let f(x) be a non-negative continuous fu...

Let `f(x)` be a non-negative continuous function such that the area bounded by the curve `y=f(x),` the x-axis, and the ordinates `x=pi/4a n dx=beta>pi/4i sbetasinbeta+pi/4cosbeta+sqrt(2)betadot` Then `f(pi/2)` is `(pi/2-sqrt(2)-1)` (b) `(pi/4+sqrt(2)-1)` `-pi/2` (c) `(1-pi/4+sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a non-negative continuous function such that the area bounded by the curve y=f(x), the x-axis, and the ordinates x=(pi)/(4) and x=betagt(pi)/(4)" is "beta sin beta +(pi)/(4)cos beta +sqrt(2)beta. Then f'((pi)/(2)) is

Area lying in the first quadrant and bounded by the circle x^2+y^2=4 and the lines x= 0 a n dx= 2 is(A) pi (B) pi/2 (C) pi/3 (D) pi/4

The area bounded by the curves x^2+y^2=1,x^2+y^2=4 and the pair of lines sqrt3 x^2+sqrt3 y^2=4xy , in the first quadrant is (1) pi/2 (2) pi/6 (3) pi/4 (4) pi/3

Prove that pi/6

Prove that pi/6 lt int_0^1(dx) (sqrt(4-x^2-x^3)) lt pi/(4sqrt(2))

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

If f(x)=sqrt(1+cos^2(x^2)),t h e nf^(prime)((sqrt(pi))/2) is (a) (sqrt(pi))/6 (b) -sqrt(pi//6) (c) 1//sqrt(6) (d) pi//sqrt(6)

Prove that : int_(0)^(pi//2)(x)/(sin x +cos x)dx= (pi)/(4sqrt(2)) log |(sqrt(2)+1)/(sqrt(2)-1)|

The area enclosed by the curve y=sqrt(4-x^2),ygeqsqrt(2)sin((xpi)/(2sqrt(2))) , and the x-axis is divided by the y-axis in the ratio. (a) (pi^2-8)/(pi^2+8) (b) (pi^2-4)/(pi^2+4) (c) (pi-4)/(pi-4) (d) (2pi^2)/(2pi+pi^2-8)