Home
Class 12
MATHS
The differential equation of the family ...

The differential equation of the family of curves whose equation is `(x-h)^2+(y-k)^2=a^2`, where `a` is a constant, is (A) `[1+(dy/dx)^2]^3=a^2 (d^2y)/dx^2` (B) `[1+(dy/dx)^2]^3=a^2 ((d^2y)/dx^2)^2` (C) `[1+(dy/dx)]^3=a^2 ((d^2y)/dx^2)^2` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (d^2y)/(dx^2)=((dy)/(dx))^2

Solve (d^2y)/(dx^2)=((dy)/(dx))^2

The differential equation of the family of curves y=k_(1)x^(2)+k_(2) is given by (where, k_(1) and k_(2) are arbitrary constants and y_(1)=(dy)/(dx), y_(2)=(d^(2)y)/(dx^(2)) )

If (d^(2)x)/(dy^(2)) ((dy)/(dx))^(3) + (d^(2) y)/(dx^(2)) = k , then k is equal to

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-3 (3) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-2 (4) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^3

(d^2x)/(dy^2) equals: (1.) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2)) ((dy)/(dx))^-3 (3) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-2 (4) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^3

If (d^2x)/(dy^2)((dy)/(dx))^3+(d^2y)/(dx^2)=K then the value of k is equal to

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^(-1) (2) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3) (3) ((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-2) (4) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3)

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2