Home
Class 12
MATHS
sec^(2)y(dy)/(dx)+2xtany=x^(3)....

`sec^(2)y(dy)/(dx)+2xtany=x^(3).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sec^2y\ (dy)/(dx)+2xtany=x^3 satisfies tany=c e^(-x^A)+B{x^2-1}, then (AB)^2 equals

sec^2y dy/dx+2xtany=x^3

Integrating factor of sec^2y dy/dx+x tany=x^3

(dy)/(dx)+xsin2y=x^(3)cos^(2)y

The solution of the equation (dy)/(dx) +1/xtany =(1)/(x^(2))tan y sin y is:

The solution of the differential equation sin 2y (dy)/(dx) +2 tan x cos ^(2) y=2 sec x cos ^(3) y is: (where C is arbitary constant)

The solution of the differential equation sin 2y (dy)/(dx) +2 tan x cos ^(2) y=2 sec x cos ^(3) y is: (where C is arbitary constant)

x(dy)/(dx)+y=y^(2)x^(3)cos x

dy/dx - y/x = 2x^2

The solution of the differential equation x=1+x y(dy)/(dx)+(x^2y^2)/(2!)((dy)/dx)^2+(x^3y^3)/(3!)((dy)/(dx))^3+... i s