Home
Class 12
MATHS
dy/dx+2x/(1+x^2)y=1/(x(1+x^2))...

`dy/dx+2x/(1+x^2)y=1/(x(1+x^2))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (dy)/(dx) + (2x)/(1+ x^(2)) y= (1)/((1+x^(2))^(2))

dy/dx + (1-2x)/x^2 y=1

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If y= "tan"^(-1) (2x)/(1-x^(2)) , prove that (dy)/(dx)= (2)/(1 + x^(2))

The family of curves represented by (dy)/(dx)=(x^(2)+x+1)/(y^(2)+y+1) and the family represented by (dy)/(dx)+(y^(2)+y+1)/(x^(2)+x+1)=0

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

Solve the equation (1-x^2)((dy)/(dx))+2x y=xsqrt(1-x^2)

x(x-1) (dy)/(dx) - (x-2) y = x^3 (2x-1)

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))