Home
Class 12
MATHS
If c1,c2 are arbitrary constants then ge...

If `c_1,c_2` are arbitrary constants then general solution of the differential equation `(d^2y)/(dx^2)=e^(-3x)` can be expressed as `y=9e^(-3x)+c_1x+c_2` `y=-3e^(-3x)+c_1x+c_2` `y=3e^(-3x)+c_1x+c_2` `y=(e^(-3x))/9+c_1x+c-2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of the differential equation (d^2y)/dx^2=e^(-3x) is (A) y=9e^(-3x)+C_1x+C_2 (B) y=-3e^(-3x)+C_1x+C_2 (C) y=3e^(-3x)+C_1x+C_2 (D) y=e^(-3x)/9+C_1x+C_2

Show that y=b e^x+c e^(2x)\ is a solution of the differential equation (d^2y)/(dx^2)-3(dy)/(dx)+2y=0.

The general solution of the differential equation (dy)/(dx)=e^(x+y) is (A) e^x+e^(-y)=C (B) e^x+e^y=C (C) e^(-x)+e^y=C (D) e^(-x)+e^(-y)=C

The general solution of the differential equation (dy)/(dx)=e^(x+y) is (A) e^x+e^(-y)=C (B) e^x+e^y=C (C) e^(-x)+e^y=C (D) e^(-x)+e^(-y)=C

The general solution of the differential equation (y dx-x dy)/y=0 is(A) x y = C (B) x=C y^2 (C) y = C x (D) y=C x^2

The general solution of the differential equation y dx+(x+2y^2)dy=0 is a) x y+y^2=c b) 3x y+y^2=c c) x y+2y^3=c d) 3x y+2y^3=c

The solution of the differential equation (dy)/(dx)-(y(x+1))/x=0 is given by a. y=x e^(x+C) b. x=y e^x c. y=x+C d. x y=e^x+C

Verify that y=c e^(t a n-1_x) is a solution of differential equation (1+x^2)(d^2y)/(dx^2)+(2x-1)(dy)/(dx)=0.

The solution of the differential equation (dy)/(dx)+1=e^(x+y), is a. (x+y)e^(x+y)=0 b. (x+C)e^(x+y)=0 c. (x-C)e^(x+y)=1 d. (x+C)e^(x+y)+1=0

The solution of the differential equation xdy-ydx+3x^(2)y^(2)e^(x^(3))dx=0 is (where, c is an arbitrary constant)