Home
Class 12
MATHS
The solution of xdy=(2y+2x^4+x^2)dx, is ...

The solution of `xdy=(2y+2x^4+x^2)dx`, is (A) `y=x^4+xlogx+C` (B) `y=x^2+xlogx+C` (C) `y=x^4+x^2logx+C` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the equation xdy-ydx=sqrt(x^2-y^2)dx subject to the condition y(1)=0 is (A) y=xsin(logx) (B) y=x^2 sin(logx) (C) y=x^2(x-1) (D) none of these

The solution of y(2xy+e^x)dx-e^xdy=0 is (A) x^2+ye^(-x)=C (B) xy^2+e^(-x)=C (C) x/y+e^(-x)/x^2=C (D) x^2+e^x/y=C

The solution of cos(x+y)dy=dx is (A) y=cos^-1(y/x)+C (B) y=xsec(y/x)+C (C) y=tan((x+y)/2)+C (D) none of these

If the slope of tangent to a curve y=f(x) is maximum at x=1 and minimum at x=0 , then equation of the curve which also satisfies (d^3y)/dx^3=4x-3 , is (A) y=x^4/6-x^3/2+x^2/2+1 (B) y=x^4/4+x^3-x^2/3+1 (C) y=x^4/4-x^3/7+x^2/3+3 (D) none of these

The solution of the equation dy/dx=x^3y^2+xy is (A) x^2y-2y+1=cye^(-x^2/2) (B) xy^2+2x-y=ce^(-y/2) (C) x^2y-2y+x=cxe^(-y/2) (D) none of these

The solution of dy/dx+(xy^2-x^2y^3)/(x^2y+2x^3y^2)=0 , is (A) log(y^2/x)-1/(xy)=C (B) log(x/y)+y^2/x=C (C) log(x^2y)+y^2/x=C (D) none of these

The solution of the equation ydx-xdy=x^2ydx is (A) y^2e^(-x^2/2)=C^2x^2 (B) y=Cxe^(x^2/2) (C) x^2=C^2y^2e^(x^2) (D) ye^(x^2)=x

Find dy/dx if y= e^x.logx

The general solution of the differential equation e^x dy + (y e^x + 2x) dx = 0 is(A) xe^y+x^2=C (B) xe^y+y^2=C (C) ye^x+x^2=C (D) ye^y+x^2=C

Image of ellipse 4x^2 + 9y^2 = 36 in the line y=x is : (A) 9x^2 + 4y^2 = 36 (B) 3x^2 + 2y^2 = 36 (C) 2x^2+3y^2 = 36 (D) none of these