Home
Class 12
MATHS
The differential equation of all circ...

The differential equation of all circles passing through the origin and having their centres on the x-axis is (1) `x^2=""y^2+""x y(dy)/(dx)` (2) `x^2=""y^2+"3"x y(dy)/(dx)` (3) `y^2=x^2""+"2"x y(dy)/(dx)` (4) `y^2=x^2""-"2"x y(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

Solve: 2x y(dy)/(dx)=x^2+y^2

Find (dy)/(dx)\ if (x^2+y^2)^2=x y

If (x+y)^2=2a x y , find (dy)/(dx)

The equation of the curve passing through the point (1,1) and satisfying the differential equation (dy)/(dx) = (x+2y-3)/(y-2x+1) is

The differential equations of all circle touching the x-axis at orgin is (a) (y^(2)-x^(2))=2xy((dy)/(dx)) (b) (x^(2)-y^(2))(dy)/(dx)=2xy ( c ) (x^(2)-y^(2))=2xy((dy)/(dx)) (d) None of these

(dy)/(dx)+(x-2y)/(2x-y)=0

If (x^2+y^2)^2=x y , find (dy)/(dx)

If (x^2+y^2)^2=x y , find (dy)/(dx)

x(dy)/(dx)+y=y^(2)x^(3)cos x